2016/17 MATH2230B/C Complex Variables with Applications Suggested Solution of Selected Problems in HW 1
 Sai Man Pun, smpun@math.cuhk.edu.hk P. 61 8,9 will be graded

All the problems are from the textbook, Complex Variables and Application (9th edition).

1 P. 16

7. Show that

$$
\left|\operatorname{Re}\left(2+\bar{z}+z^{3}\right)\right| \leq 4 \quad \text { when } \quad|z| \leq 1
$$

Proof. Let z be such that $|z| \leq 1$, then we can write z into polar form:

$$
z=r e^{i \theta}
$$

where $0 \leq r \leq 1$ and $-\pi<\theta \leq \pi$. Hence, we have

$$
\begin{aligned}
\left|\operatorname{Re}\left(2+\bar{z}+z^{3}\right)\right| & =\left|\operatorname{Re}\left(2+r e^{-i \theta}+r^{3} e^{i 3 \theta}\right)\right| \\
& =\left|2+r \cos \theta+r^{3} \cos 3 \theta\right| \\
& \leq 2+r|\cos \theta|+r^{3}|\cos 3 \theta| \\
& \leq 2+r+r^{3} \\
& \leq 2+1+1=4
\end{aligned}
$$

13. Show that the equation $\left|z-z_{0}\right|=R$ of a circle, centered at z_{0} with radius R , can be written as

$$
|z|^{2}-2 \operatorname{Re}\left(z \overline{z_{0}}\right)+\left|z_{0}\right|^{2}=R^{2}
$$

Proof. From $\left|z-z_{0}\right|=R$, we obtain

$$
\begin{aligned}
\left|z-z_{0}\right| & =R \\
\Longleftrightarrow\left|z-z_{0}\right|^{2} & =R^{2} \\
\Longleftrightarrow\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right) & =R^{2} \\
\Longleftrightarrow(z \bar{z})-\left(z \overline{z_{0}}+\bar{z} z_{0}\right)+z_{0} \overline{z_{0}} & =R^{2} \\
\Longleftrightarrow|z|^{2}-2 \operatorname{Re}\left(z \overline{z_{0}}\right)+\left|z_{0}\right|^{2} & =R^{2}
\end{aligned}
$$

Note that we have used the following facts:

$$
\begin{gathered}
|\omega|^{2}=\omega \bar{\omega} \quad \forall \omega \in \mathbb{C}, \\
\omega+\bar{\omega}=2 \operatorname{Re}(\omega) \quad \forall \omega \in \mathbb{C} .
\end{gathered}
$$

14. Show that the hyperbola $x^{2}-y^{2}=1$ can be written as

$$
z^{2}+\bar{z}^{2}=2
$$

where $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$.
Proof. Note that the following hold: for any $z \in \mathbb{C}$

$$
\begin{aligned}
& x=\operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \\
& y=\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
x^{2}-y^{2} & =1 \\
\Longleftrightarrow\left(\frac{z+\bar{z}}{2}\right)^{2}+\left(\frac{z-\bar{z}}{2 i}\right)^{2} & =1 \\
\Longleftrightarrow \frac{2\left(z^{2}+\bar{z}^{2}\right)}{4} & =1 \\
\Longleftrightarrow z^{2}+\bar{z}^{2} & =2 .
\end{aligned}
$$

2 P. 23

1. Find the principal argument $\operatorname{Arg}(z)$ when
(a) $z=\frac{-2}{1+\sqrt{3} i}$;
(b) $z=(\sqrt{3}-i)^{6}$.

Solution. (a) Let $z=\frac{-2}{1+\sqrt{3} i}$, then

$$
\begin{aligned}
z & =\frac{-2(1-\sqrt{3} i)}{(1+\sqrt{3} i)(1-\sqrt{3} i)} \\
& =\frac{-2(1-\sqrt{3} i)}{4} \\
& =-\frac{1}{2}+\frac{\sqrt{3}}{2} i .
\end{aligned}
$$

The principal value of $z, \theta=\operatorname{Arg}(z)$ is obtained by

$$
\begin{gathered}
\sin \theta=\frac{\sqrt{3}}{2} \quad \text { and } \quad \cos \theta=-\frac{1}{2} \\
\theta=\frac{2}{3} \pi .
\end{gathered}
$$

(b) Let $\omega=\sqrt{3}-i$, then we write ω into polar form:

$$
\omega=2 e^{-i \frac{\pi}{6}}
$$

Hence, we have

$$
z=\omega^{6}=2^{6} e^{-i \pi}=-64
$$

Obviously, the principal argument of z is $\operatorname{Arg}(z)=\pi . \quad$ (Note that $-\pi<$ $\operatorname{Arg}(z) \leq \pi$ for any $z \in \mathbb{C}$.)

$3 \quad$ P. 31

3. Find $(-8-8 \sqrt{3} i)^{1 / 4}$, express the roots in rectangular coordinates, exhibit then as the vertices of a certain square, and point out which is the principal root.

Solution. Let $z=-8-8 \sqrt{3} i$, then write it into polar form to obtain

$$
z=16 e^{-i 2 \pi / 3}
$$

Then, we have

$$
z^{1 / 4}=2 e^{i\left(-\frac{\pi}{6}+\frac{2 k \pi}{4}\right)}, \quad k=0,1,2,3 .
$$

The principal root of z is $2 e^{-i \pi / 6}=\sqrt{3}-i$.
6. Find the four zeros of the polynomial $z^{4}+4$, one of them being

$$
z_{0}=\sqrt{2} e^{i \pi / 4}=1+i
$$

Then use those zeros to factor $z^{4}+4$ into quadratic factors with real coefficients.
Remark. Typo in the textbook: one should factorize $z^{4}+4$ into quadratic factors, not $z^{2}+4$.

Solution. Since z_{0} is the zero of $z^{4}+4$, then \bar{z}_{0} is also the zero of $z^{4}+4$. On the other hand, it is easy to verify that $-z_{0}$ is the zero of $z^{4}+4$ as well. Then, so is $-\overline{z_{0}}$. Hence, we can factor the polynomial $z^{4}+4$ into the following

$$
z^{4}+4=\left(z-z_{0}\right)\left(z-\bar{z}_{0}\right)\left(z+z_{0}\right)\left(z+\bar{z}_{0}\right) .
$$

Note that

$$
\begin{aligned}
& \left(z-z_{0}\right)\left(z-\bar{z}_{0}\right)=z^{2}-\left(z_{0}+\bar{z}_{0}\right) z+\left|z_{0}\right|^{2}=z^{2}-2 z+2, \\
& \left(z+z_{0}\right)\left(z+\overline{z_{0}}\right)=z^{2}+\left(z_{0}+\overline{z_{0}}\right) z+\left|z_{0}\right|^{2}=z^{2}+2 z+2
\end{aligned}
$$

Then, the polynomial $z^{4}+4$ can be factored into quadratic factors with real coefficients

$$
z^{4}+4=\left(z^{2}-2 z+2\right)\left(z^{2}+2 z+2\right)
$$

$4 \quad$ P. 61

8. Show that $f^{\prime}(z)$ does not exist at any point z when
(a) $f(z)=\operatorname{Re}(z)$.
(b) $f(z)=\operatorname{Im}(z)$.

Proof. (a) Let $f(z)=\operatorname{Re}(z)$, then for any $z \in \mathbb{C}$, as Δz approaches the origin horizontally through $(\Delta x, 0)$ on the real axis,

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{\operatorname{Re}(z+\Delta x)-\operatorname{Re}(z)}{\Delta x}=\frac{\operatorname{Re}(z)+\Delta x-\operatorname{Re}(z)}{\Delta x}=1 .
$$

On the other hand, as Δz approaches the origin vertically through $(0, \Delta y)$ on the imaginary axis,

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{\operatorname{Re}(z+i \Delta y)-\operatorname{Re}(z)}{i \Delta y}=\frac{\operatorname{Re}(z)-\operatorname{Re}(z)}{i \Delta y}=0 .
$$

It follows that $\frac{d f}{d z}$ does not exist anywhere.
(b) Similar to part (a),

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{\operatorname{Im}(z+\Delta x)-\operatorname{Im}(z)}{\Delta x}=\frac{\operatorname{Im}(z)-\operatorname{Im}(z)}{\Delta x}=0
$$

and

$$
\frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{\operatorname{Im}(z+i \Delta y)-\operatorname{Im}(z)}{i \Delta y}=\frac{\operatorname{Im}(z)+\Delta y-\operatorname{Im}(z)}{i \Delta y}=-i .
$$

9. Let f denote the function whose values are

$$
f(z)=\left\{\begin{array}{cc}
\bar{z}^{2} / z & \text { when } z \neq 0 \\
0 & \text { when } z=0
\end{array}\right.
$$

Show that if $z=0$, then $\Delta w / \Delta z=1$ at each nonzero point on the real and imaginary axes in the Δz or $\Delta x \Delta y$ plane. Then show that $\Delta w / \Delta z=-1$ at each nonzero point $(\Delta x, \Delta x)$ on the line $\Delta y=\Delta x$ in the plane. Conclude from these observations that $f^{\prime}(0)$ does not exist.

Proof. Let $z=0$ and $\Delta z=\Delta x$ on the real axis, then

$$
\frac{f(z+\Delta z)}{\Delta z}=\frac{f(\Delta z)}{\Delta z}=\frac{f(\Delta x)}{\Delta x}=\frac{(\Delta x)^{2} / \Delta x}{\Delta x}=1 .
$$

Similarly, if we take $\Delta z=i \Delta y$ on the imaginary axis, then

$$
\frac{f(z+\Delta z)}{\Delta z}=\frac{f(i \Delta y)}{i \Delta y}=\frac{(-i \Delta y)^{2} / i \Delta y}{i \Delta y}=1 .
$$

On the other hand, if we take $\Delta z=\Delta x+i \Delta x=\Delta x(1+i)$, then

$$
\begin{aligned}
\frac{f(z+\Delta z)}{\Delta z} & =\frac{f(\Delta x(1+i))}{\Delta x(1+i)} \\
& =\frac{(\Delta x(1-i))^{2} /(\Delta x(1+i))}{\Delta x(1+i)} \\
& =\frac{(\Delta x(1-i))^{2}}{(\Delta x(1+i))^{2}} \\
& =\left(\frac{1-i}{1+i}\right)^{2}=(-i)^{2}=-1 .
\end{aligned}
$$

If $f^{\prime}(z)$ exists at $z=0$, then the limit

$$
\lim _{\Delta \rightarrow 0} \frac{f(z+\Delta z)}{\Delta z}
$$

can be found by letting Δz approach the origin in the complex plane in any manner. Hence, $f^{\prime}(0)$ does not exist. Remark that it is not sufficient to consider only horizontal and vertical approaches to the origin in the complex plane \mathbb{C}.

